Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
J Neurol ; 269(8): 4000-4012, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1941616

ABSTRACT

BACKGROUND: Assessing the safety of SARS-CoV-2 mRNA vaccines and the effect of immunotherapies on the seroconversion rate in patients with autoimmune neurological conditions (ANC) is relevant to clinical practice. Our aim was to assess the antibody response to and safety of SARS-CoV-2 mRNA vaccines in ANC. METHODS: This longitudinal study included ANC patients vaccinated with two doses of BNT162b2 or mRNA-1273 between March and August 2021. Side effects were assessed 2-10 days after each dose. Neurological status and anti-spike receptor binding domain antibody levels were evaluated before vaccination and 4 weeks after the second dose. Healthcare-workers served as controls for antibody levels. RESULTS: We included 300 ANC patients (median age 52, IQR 40-65), and 347 healthcare-workers (median age 45, IQR 34-54). mRNA-1273 vaccine was associated with an increased risk of both local (OR 2.52 95% CI 1.45-4.39, p = 0.001) and systemic reactions (OR 2.51% CI 1.49-4.23, p = 0.001). The incidence of relapse was not different before and after vaccine (Incidence rate ratio 0.72, 95% CI 0.29-1.83). Anti-SARS-CoV-2 IgG were detected in 268 (89.9%) patients and in all controls (p < 0.0001). BNT162b2 vaccine (OR 8.84 95% CI 2.32-33.65, p = 0.001), anti-CD20 mAb (OR 0.004 95% CI 0.0007-0.026, p < 0.0001) and fingolimod (OR 0.036 95% CI 0.002-0.628, p = 0·023) were associated with an increased risk of not developing anti-SARS-CoV-2 IgG. CONCLUSION: SARS-CoV-2 mRNA vaccines were safe in a large group of ANC patients. Anti-CD20 and fingolimod treatment, as well as vaccination with the BNT162b2 vaccine, led to a reduced humoral response. These findings could inform vaccine policies in ANC patients undergoing immunotherapy.


Subject(s)
Autoimmune Diseases of the Nervous System , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , 2019-nCoV Vaccine mRNA-1273 , Adult , Aged , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Fingolimod Hydrochloride , Humans , Immunoglobulin G , Longitudinal Studies , Middle Aged , SARS-CoV-2
3.
Front Immunol ; 13: 833548, 2022.
Article in English | MEDLINE | ID: covidwho-1771039

ABSTRACT

The direct impact and sequelae of infections in children and adults result in significant morbidity and mortality especially when they involve the central (CNS) or peripheral nervous system (PNS). The historical understanding of the pathophysiology has been mostly focused on the direct impact of the various pathogens through neural tissue invasion. However, with the better understanding of neuroimmunology, there is a rapidly growing realization of the contribution of the innate and adaptive host immune responses in the pathogenesis of many CNS and PNS diseases. The balance between the protective and pathologic sequelae of immunity is fragile and can easily be tipped towards harm for the host. The matter of immune privilege and surveillance of the CNS/PNS compartments and the role of the blood-brain barrier (BBB) and blood nerve barrier (BNB) makes this even more complex. Our understanding of the pathogenesis of many post-infectious manifestations of various microbial agents remains elusive, especially in the diverse African setting. Our exploration and better understanding of the neuroimmunology of some of the infectious diseases that we encounter in the continent will go a long way into helping us to improve their management and therefore lessen the burden. Africa is diverse and uniquely poised because of the mix of the classic, well described, autoimmune disease entities and the specifically "tropical" conditions. This review explores the current understanding of some of the para- and post-infectious autoimmune manifestations of CNS and PNS diseases in the African context. We highlight the clinical presentations, diagnosis and treatment of these neurological disorders and underscore the knowledge gaps and perspectives for future research using disease models of conditions that we see in the continent, some of which are not uniquely African and, where relevant, include discussion of the proposed mechanisms underlying pathogen-induced autoimmunity. This review covers the following conditions as models and highlight those in which a relationship with COVID-19 infection has been reported: a) Acute Necrotizing Encephalopathy; b) Measles-associated encephalopathies; c) Human Immunodeficiency Virus (HIV) neuroimmune disorders, and particularly the difficulties associated with classical post-infectious autoimmune disorders such as the Guillain-Barré syndrome in the context of HIV and other infections. Finally, we describe NMDA-R encephalitis, which can be post-HSV encephalitis, summarise other antibody-mediated CNS diseases and describe myasthenia gravis as the classic antibody-mediated disease but with special features in Africa.


Subject(s)
Brain Diseases , COVID-19 , Central Nervous System Diseases , Communicable Diseases , Encephalitis , Peripheral Nervous System Diseases , Adult , Autoimmunity , Central Nervous System , Child , Humans , Peripheral Nervous System
SELECTION OF CITATIONS
SEARCH DETAIL